A Learning Framework for Morphological Operators Using Counter-Harmonic Mean
نویسندگان
چکیده
We present a novel framework for learning morphological operators using counter-harmonic mean. It combines concepts from morphology and convolutional neural networks. A thorough experimental validation analyzes basic morphological operators dilation and erosion, opening and closing, as well as the much more complex top-hat transform, for which we report a real-world application from the steel industry. Using online learning and stochastic gradient descent, our system learns both the structuring element and the composition of operators. It scales well to large datasets and online settings.
منابع مشابه
Triangular Intuitionistic Fuzzy Triple Bonferroni Harmonic Mean Operators and Application to Multi-attribute Group Decision Making
As an special intuitionistic fuzzy set defined on the real number set, triangular intuitionistic fuzzy number (TIFN) is a fundamental tool for quantifying an ill-known quantity. In order to model the decision maker's overall preference with mandatory requirements, it is necessary to develop some Bonferroni harmonic mean operators for TIFNs which can be used to effectively intergrate the informa...
متن کاملPower harmonic aggregation operator with trapezoidal intuitionistic fuzzy numbers for solving MAGDM problems
Trapezoidal intuitionistic fuzzy numbers (TrIFNs) express abundant and flexible information in a suitable manner and are very useful to depict the decision information in the procedure of decision making. In this paper, some new aggregation operators, such as, trapezoidal intuitionistic fuzzy weighted power harmonic mean (TrIFWPHM) operator, trapezoidal intuitionistic fuzzy ordered weighted po...
متن کاملMorphological Bilateral Filtering
A current challenging topic in mathematical morphology is the construction of locally adaptive operators; i.e., structuring functions are dependent on the input image itself at each position. Development of spatially-variant filtering is well established in the theory and practice of Gaussian filtering. The aim of the first part of the paper is to study how to generalize these convolutionbased ...
متن کاملNon-Local Morphological PDEs and p-Laplacian Equation on Graphs With Applications in Image Processing and Machine Learning
In this paper, we introduce a new class of nonlocal p-Laplacian operators that interpolate between non-local Laplacian and infinity Laplacian. These operators are discrete analogous of the game p-laplacian operators on Euclidean spaces, and involve discrete morphological gradient on graphs. We study the Dirichlet problem associated with the new p-Laplacian equation and prove existence and uniqu...
متن کاملDynamic Harmonic Analysis of Long Term over Voltages Based on Time Varying Fourier series in Extended Harmonic Domain
Harmonics have become an important issue in modern power systems. The widespread penetration of non-linear loads to emerging power systems has turned power quality analysis into an important operation issue under both steady state and transient conditions. This paper employs an Extended Harmonic Domain (EHD) based framework for dynamic analysis of long term analysis over voltages during the tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013